RECOMMENDED READING
[1] Alexandrov M D, Marshak A, Ackerman A S. Cellular statistical models of broken cloud fields. Part I. Theory. Journal of Atmospheric Sciences 2010; 67:2125-2151
[2] Alexandrov M D, Ackerman A S, Marshak A. Cellular statistical models of broken cloud fields. Part II. Comparison with a dynamical model and statistics of diverse ensembles. Journal of Atmospheric Sciences 2010; 67:2152-2170
[3] Cook P A, de Oliveira C R E, Haigh J D, Goddard A J. A finite element-spherical harmonics model for radiative transfer in inhomogeneous clouds. Part II. Some applications. Atmospheric Research 2004; 72:223-237.
[4] Ehnberg J S G, Bollen M H J. Simulation of global solar radiation based on cloud observations. Solar Energy 2005; 78:157-162.
[5] Evans K F, Wiscombe W J. An algorithm for generating stochastic cloud fields from radar profile statistics. Atmospheric Research 2004; 72:263-289.
[6] Evseev E G, Kudish I A. The assessment of different models to predict the global solar radiation on a surface tilted to the south. Solar Energy 2009; 83:377-388.
[7] Faure T, Isaka H, Guillemet B. Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds. Feasibility study. Remote Sensing of Environment 2001; 77:123-138.
[8] Gu Y, Liou K N. Radiation parametrization for three-dimensional inhomogeneous cirrus clouds: Application to climate models. Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, March 13-17, 2000, 8 pp.
[9] Gu L, Fuentes J D, Garstang M, da Silva J T, Heitz R, Sigler J, Shugart H H. Cloud modulation of surface solar irradiance at a pasture site in southern Brazil. Agricultural and Forest Meteorology 2001; 106:117-129.
[10] Hahn C J, Rossow W B, Warren S G. ISCCP cloud properties associated with standard cloud types identified in individual surface observations. Journal of Climate 2001; 14:11-28.
[11] van de Hulst H C. Multiple light scattering Tables, formulas and applications, Vol. 2, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980.
[12] Igawa N, Koga Y, Matsuzawa T, Nakamura H. Models of sky radiance distribution and sky luminance distribution. Solar Energy 2004; 77:137-157.
[13] Ishida H, Asano S. A quasi-analytic solution of the radiative transfer equation for three-dimensional atmospheres. Journal of Quantitative Spectroscopy & Radiative Transfer 2007; 103:371-393.
[14] Johnson R W, Hering W S. An Analysis of Natural Variations in European Sky and Terrain Radiance Measurements. Interim Lab. Scripps Institution of Oceanography, La Jolla, CA. Visibility Lab. 1981.
[15] Kassianov E. Stochastic radiative transfer in multilayer broken clouds. Part I: Markovian approach. Journal of Quantitative Spectroscopy & Radiative Transfer 2003; 77:373-393.
[16] Kassianov E. Stochastic radiative transfer in multilayer broken clouds. Part II: validation tests. Journal of Quantitative Spectroscopy & Radiative Transfer 2003; 77:395-416.
[17] Kocifaj M. Sky luminance/radiance model with multiple scattering effect. Solar Energy 2009; 83:1914-1922.
[18] Kocifaj M, Lukáč J. Using the multiple scattering theory for calculation of the radiation fluxes from experimental aerosol data. Journal of Quantitative Spectroscopy and Radiative Transfer 1998; 60: 933-942.
[19] Kocifaj M. Angular distribution of scattered radiation under broken cloud arrays: An approximation of successive orders of scattering. Solar Energy 2012, 86:3575-3586.
[20] Kokhanovsky AA, Rozanov VV, Zege EP, Bovensmann H, Burrows JP. A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 μm spectral region. Journal of Geophysical Research 2003, 108:4008, doi:10.1029/2001JD001543.
[21] Kuo K S, Weger R C, Welch R M, Cox S K. The Picard iterative approximation to the solution of the integral equation of radiative transfer – Part II. Three-dimensional geometry. Journal of Quantitative Spectroscopy & Radiative Transfer 1996; 55:195-213.
[22] Levoni C, Cattani E, Cervino M, Guzzi R, Nicolantonio WD. Effectiveness of the MS-method for computation of the intensity field reflected by a multi-layer plane parallel atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer 2001; 69: 635-650
[23] Marshak A, Davis A. (Eds). 3D Radiative Transfer in Cloudy Atmospheres. Springer 2005; Berlin, Heidelberg, New York.
[24] Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge 2002.
[25] Padovan A, Col D D. Measurement and modeling of solar irradiance components on horizontal and tilted planes. Solar Energy 2010; 84:2068-2084.
[26] Perez R, Seals R, Michalsky J, Ineichen P. Geostatistical properties and modeling of random cloud patterns for real skies. Solar Energy 1993; 51:7-18.
[27] Román R, Antón M, Cazora A, de Miguel A, Olmo FJ, Bilbao J, Alados-Arboledas L. Calibration of an all-sky camera for obtaining sky radiance at three wavelengths. Atmospheric Measurement Techniques Discussions 2012; 5:1873-1905.
[28] Torres J L, de Blas M, García A, Gracia A, de Francisco A. Sky luminance distribution in Pamplona (Spain) during the summer period. Journal of Atmospheric and Solar-Terrestrial Physics 2010; 72:382-388.
[29] Venema V, Meyer S, García S G, Kniffka A, Simmer C, Crewell S, Löhnert U, Trautmann T, Macke A. Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm. Tellus 2006; 58A:104-120
[30] Wittkopf S K, Soon L K. Analysing sky luminance scans and predicting frequent sky patterns in Singapore. Lighting Research and Technology 2007; 39:31-51.
[31] Zuev V E, Titov G A. Radiative transfer in cloud fields with random geometry. Journal of Atmosperic Sciences 1995; 52:176– 190.